2022

 

2021

An J, Zhang B, Ai S, Wang Z, Feng Y. Evaluation of vertical crustal movements and sea level changes around Greenland from GPS and tide gauge observations. Acta Oceanologica Sinica, 40, 4-12, https://doi.org/10.1007/s13131-021-1719-0, 2021.

Kappelsberger MT, Strößenreuther U, Scheinert M, Horwath M, Groh A, Knöfel C, Lunz S, Khan SA. Modeled and observed bedrock displacements in north‐east Greenland using refined estimates of present‐day ice‐mass changes and densified GNSS measurements. Journal of Geophysical Research: Earth Surface, 126(4), e2020JF005860, https://doi.org/10.1029/2020JF005860, 2021.

2020

Kjeldsen KK, Khan SA, Colgan WT, MacGregor JA, Fausto RS. Time‐Varying Ice Sheet Mask: Implications on Ice‐Sheet Mass Balance and Crustal Uplift. Journal of Geophysical Research: Earth Surface, 125(12),e2020JF005775, https://doi.org/10.1029/2020JF005775, 2020.

Li W, Shum CK, Li F, Zhang S, Ming F, Chen W, Zhang B, Lei J, Zhang Q. Contributions of Greenland GPS Observed Deformation From Multisource Mass Loading Induced Seasonal and Transient Signals. Geophysical Research Letters, 47(15), e2020GL088627, https://doi.org/10.1029/2020GL088627, 2020.

Sohn DH, Park KD, Davis JL, Nettles M, Elosegui P. Rapid ionospheric variations at high latitudes: Focusing on Greenland. Advances in Space Research, 65(7), 1673-84, https://doi.org/10.1016/j.asr.2020.01.022, 2020.

Tabibi S, Geremia-Nievinski F, Francis O, van Dam T. Tidal analysis of GNSS reflectometry applied for coastal sea level sensing in Antarctica and Greenland. Remote Sensing of Environment, 1(248), 111959, https://doi.org/10.1016/j.rse.2020.111959, 2020.

2019

Artemieva, I.M., Lithosphere thermal thickness and geothermal heat flux in Greenland from a new thermal isostasy method, Earth-Science Reviews, 188, 469-481, http://doi.org/10.1016/j.earscirev.2018.10.015, 2019.

Bevis, M., Harig, C., Khan, S.A., Brown, A., Simons, F.J., Willis, M., Fettweis, X., van den Broeke, M.R., Madsen, F.B., Kendrick, E., Caccamise II, D.J., van Dam, T., Knudsen, P., and Nylen, T., Accelerating changes in ice mass within Greenland, and the ice sheet’s sensitivity to atmospheric forcing, PNAS, 116(6) 1934-1939, http://doi.org/10.1073/pnas.1806562116, 2019.

Straneo, F., Sutherland, D.A., Stearns, L., Catania. G., Heimbach, P., Moon, T., Cape, M.R., Laidre, K.L., Barber, D., Rysgaard, S., Mottram, R., Olsen, S., Hopwood, M.J., Meire, L., The Case for a Sustained Greenland Ice Sheet-Ocean Observing System (GrIOOS), Frontiers in Marine Science, 6, 138, http://doi.org/10.3389/fmars.2019.00138, 2019.

Wang, L., Khan, S. A., Bevis, M., van den Broeke, M. R., Kaban, M. K., Thomas, M., & Chen, C. (2019). Downscaling GRACE predictions of the crustal response to the present‐day mass changes in Greenland. Journal of Geophysical Research: Solid Earth, 124(5), 5134-5152, https://doi.org/10.1029/2018JB016883, 2019.

Zhang, b., Liu, L., Khan, S.A., van Dam, T., Bjørk, A.A., Peings, Y., Zhang, E., Bevis, M., Yao, Y., Noël, B., Geodetic and model data reveal different spatio-temporal patterns of transient mass changes over Greenland from 2007 to 2017, Earth and Planetary Science Letters, 515, 154-163, http://doi.org/10.1016/j.epsl.2019.03.028, 2019.

2018

Zhang, B., Zhang, E., Liu, L., Khan, S.A., van Dam, T., Yao, Y., Bevis, M. and Helm, V., Geodetic measurements reveal short-term changes of glacial mass near Jakobshavn Isbræ (Greenland) from 2007 to 2017, Earth and Planetary Science Letters, 503, 216-226, http://doi.org/10.0.3.248/j.epsl.2018.09.029, 2018.

2017

Adhikari, S., E.R. Ivins, and E. Larour, Mass transport waves amplified by intense Greenland melt and detected in solid Earth deformation, Geophysical Research Letters, 44, 4965-4975, http://doi.org/10.1002/2017GL073478, 2017.

Durgonics, T., A. Komjathy, O. Verkhoglyadova, E. B. Shume, H.-H. Benzon, A. J. Mannucci, M. D. Butala, P. Høeg, and R. B. Langley, Multi-instrument observations of a geomagnetic storm and its effects on the Arctic ionosphere: A case study of the 19 February 2014 storm, Radio Science, 52(1), 146-165, http://doi.org/10.1002/2016RS006106, 2017.

Hardy, R.A., Nerem, R.S. and Wiese, D.N., The impact of atmospheric modeling errors on GRACE estimates of mass loss in Greenland and Antarctica, Journal of Geophysical Research: Solid Earth, 122(12), 10,440-10,458, http://doi.org/10.1002/2017JB014556, 2017.

Hawley, R., Neumann, T., and others, Report from the NSF workshop on GNET 2017 forward: The future shape of a Greenland GNSS observation network, January 26-27, 2017, Greenbelt, MD, 39 pages, http://www.dartmouth.edu/~ice/
GNET_workshop_materials/GNETwhitepaperV15.pdf, 2017.

Liu, L., S. A. Khan, T. van Dam, J. H. Y. Ma, and M. Bevis, Annual variations in GPS-measured vertical displacements near Upernavik Isstrøm (Greenland) and contributions from surface mass loading, Journal of Geophysical Research, Solid Earth, 122(1), 677-691, http://doi.org/10.1002/2016JB013494, 2017.

Zhang, B., Liu, L., Khan, S.A., van Dam, T., Zhang, E. and Yao, Y., Transient variations in glacial mass near Upernavik Isstrøm (west Greenland) detected by the combined use of GPS and GRACE data, Journal of Geophysical Research: Solid Earth, 122(12), 10,626-10,642, http://doi.org/10.1002/2017JB014529, 2017.

2016

Khan, S.A., Sasgen, I., Bevis, M., van Dam, T., Bamber, J.L., Wahr, J., Willis, M., Kjær, K.H., Wouters, B., Helm, V., Csatho, B., Fleming, K., Bjørk, A.A., Aschwanden, A., Knudsen, P., and Munneke, P.K., Geodetic measurements reveal similarities between post–Last Glacial Maximum and present-day mass loss from the Greenland ice sheet, Science Advances, 2(9), e1600931, http://doi.org/10.1126/sciadv.1600931, 2016.

Kjeldsen, K.K., Khan, S.A., Bjørk, A.A., Nielsen, K., and Mouginot, J., Ice-dammed lake drainage in west Greenland: Drainage pattern and implications on ice flow and bedrock motion, Geophysical Research Letters, 44, 7320-7327, http://doi.org/10.1002/2017GL074081, 2016.

2015

Stevens, L. A., M. D. Behn, J. J. McGuire, S. B. Das, I. Joughin, T. Herring, D. E. Shean, and M. A. King, Greenland supraglacial lake drainages triggered by hydrologically induced basal slip, Nature, 522(7554), 73, http://doi.org/10.1038/nature14480, 2015.

2014

Nielsen, J.E., Forsberg, R. and Strykowski, G., Measured and modelled absolute gravity changes in Greenland, Journal of Geodynamics, 73, 53-59, http://doi.org/10.1016/j.jog.2013.09.003, 2014.

2013

Bevis, M., Brown, A., and Kendrick, E., Devising stable geometrical reference frames for use in geodetic studies of vertical crustal motion, Journal of Geodesy, 87(4), 311-321, http://doi.org/10.1007/s00190-012-0600-5, 2013.

Kjeldsen, K. K., S. A. Khan, J. Wahr, N. J. Korsgaard, K. H. Kjær, A. A. Bjørk, R. Hurkmans, M. R. van den Broeke, J. L. Bamber, and J. H. van Angelen, Improved ice loss estimate of the northwestern Greenland ice sheet, Journal of Geophysical Research: Solid Earth, 118(2), 698-708, http://doi.org/10.1029/2012JB009684, 2013.

2012

Bevis, M., Wahr, J., Khan, S.A., Madsen, F.B., Brown, A., Willis, M., Kendrick, E., Knudsen, P., Box, J.E., van Dam, T., Caccamise II, D.J., Johns, B., Nylen, T., Abbot, R., White, S., Miner, J., Forsberg, R., Zhou, H., Wang, J., Wilson, T., Bromwich, D., and Francis, O., Bedrock displacements in Greenland manifest ice mass variations, climate cycles and climate change, PNAS, 109(30), 11944-11948, http://doi.org/10.1073/pnas.1204664109, 2012.

Nielsen, K., S.A. Khan, N.J. Korsgaard, K.H. Kjær, J. Wahr, M. Bevis, L.A. Stearns, and L.H. Timm, Crustal uplift due to ice mass variability on Upernavik Isstrøm, west Greenland, Earth and Planetary Science Letters, 353-354, 182-189, http://doi.org/10.1016/j.epsl.2012.08.024, 2012.

2011

Simpson, M.J., Wake, L., Milne, G.A. and Huybrechts, P., The influence of decadal‐to millennial‐scale ice mass changes on present‐day vertical land motion in Greenland: Implications for the interpretation of GPS observations, Journal of Geophysical Research: Solid Earth, 116, B02406, http://doi.org/10.1029/2010JB007776, 2011.

2010

Khan, S. A., L. Liu, J. Wahr, I. Howat, I. Joughin, T. van Dam, and K. Fleming, GPS measurements of crustal uplift near Jakobshavn Isbræ due to glacial ice mass loss, Journal of Geophysical Research, 115, B09405, http://doi.org/10.1029/2010JB007490, 2010.

Khan, S., J. Wahr, M. Bevis, I. Velicogna and E. Kendrick, Spread of ice mass loss into northwest Greenland ob- served by GRACE and GPS, Geophysical Research Letters, 37, L06501, http://doi.org/10.1029/2010GL042460, 2010.